In mathematical analysis, the Hardy–Littlewood tauberian theorem is a tauberian theorem relating the asymptotics of the partial sums of a series with the asymptotics of its Abel summation. In this form, the theorem asserts that if, as y ↓ 0,
then
The integral formulation of the theorem relates in an analogous manner the asymptotics of the cumulative distribution function of a function with the asymptotics of its Laplace transform.
The theorem was proved in 1914 by G. H. Hardy and J. E. Littlewood.[1]:226 In 1930 Jovan Karamata gave a new and much simpler proof.[1]:226
Contents |
This formulation is from Titchmarsh.[1]:226 Suppose an ≥ 0 for all n, and as x ↑ 1 we have
Then as n goes to ∞ we have
The theorem is sometimes quoted in equivalent forms, where instead of requiring an ≥ 0, we require an = O(1), or we require an ≥ −K for some constant K.[2]:155 The theorem is sometimes quoted in another equivalent formulation (through the change of variable x = 1/ey ).[2]:155 If, as y ↓ 0,
then
The following more general formulation is from Feller.[3]:445 Consider a real-valued function F : [0,∞) → R of bounded variation.[4] The Laplace–Stieltjes transform of F is defined by the Stieltjes integral
The theorem relates the asymptotics of ω with those of F in the following way. If ρ is a non-negative real number, then the following are equivalent
Here Γ denotes the Gamma function. One obtains the theorem for series as a special case by taking ρ = 1 and F(t) to be a piecewise constant function with value between t=n and t=n+1.
A slight improvement is possible. A function L(x) is slowly varying at infinity if
for every positive t. Let L be a function slowly varying at infinity and ρ a non-negative real number. Then the following are equivalent
In 1911 Littlewood proved an extension of Tauber's converse of Abel's theorem. Littlewood showed the following: If an = O(1/n ), and as x ↑ 1 we have
then
This came historically before the Hardy–Littlewood tauberian theorem, but can be proved as an simple application of it.[1]:233–235
In 1915 Hardy and Littlewood developed a proof of the prime number theorem based on their tauberian theorem; they proved
where Λ is the von Mangoldt function, and then conclude
an equivalent form of the prime number theorem.[5]:34–35[6]:302–307 Littlewood developed a simpler proof, still based on this tauberian theorem, in 1971.[6]:307–309